ct_bergstrom,
  1. “Imagine we land a space probe on one of Jupiters’ moons, take up a sample of material, and find it is full of organic molecules. How can we tell whether those molecules are just randomly assembled goo or the outcome of some evolutionary process taking place on the planet?”

#science #scicomm #assemblytheory #exobiology

ct_bergstrom,
  1. This is the question at the core of the now infamous Assembly Theory paper published last week in Nature and thoroughly panned on social media.

https://www.nature.com/articles/s41586-023-06600-9

My view? There is actually some very cool science here — it’s just extremely well hidden. This thread is my attempt to explain.

ct_bergstrom,
  1. Let's get a few things out of the way first.

a) The main text of the paper is terribly written. Terribly.

b) It’s obvious why people understand it and were skeptical to say the least.

c) Nature failed both the authors and its readers by publishing it in its present form.

ct_bergstrom,
  1. I have two potential COIs, one of which matters and one of which people might claim matters.

The one that matters is that I've collaborated with author Michael Lachmann for nearly 30 years, and we are close friends. This matters because if I didn't know Michael so well, I probably wouldn't have taken the time to figure this paper out.

ct_bergstrom,
  1. The one that people might claim matters is that I’m currently funded by the Templeton World Charity Foundation.

I would disagree, because they’re an entirely separate organization from the Templeton foundation that funded some of the Assembly Theory research, they don’t care what I say, and I wouldn’t pander to them even if they did.

But I want to be upfront about it.

ct_bergstrom,
  1. With that out of the way, what does the paper do? The heart of the paper is a simple and elegant exercise in discrete mathematics. Imagine a world of arbitrary objects that can be assembled, combinatorially, to produce additional objects.
ct_bergstrom,
  1. You begin with a set of elemental objects that require no assembly at all, and you have a set of assembly rules for when two objects can be joined. This then gives you a set of objects that can be created in a single step.

Below, an illustration.

ct_bergstrom, (edited )
  1. Within this framework, we can take any object and calculate the minimum number of unique assembly steps that would have been required to produce it given our set of basic elements and our assembly rules.
ct_bergstrom,
  1. This gives the ASSEMBLY INDEX of an object.

Example below: The object at left has assembly index of four: 1) join C-D, 2) join two C-D pairs, 3) join two C-D quadromers at an interior D, 4) join two of the resulting octomers.

The one at right has assembly index of five: every link is a unique step.

ct_bergstrom,
  1. (This previous example highlights an interesting relation between modularity / compositionally and the emergence of elaborate form. The structure at left is maximally modular and thus has low assembly index despite large size; the structure at right is minimally modular and so has the reverse.)
marcel,
@marcel@waldvogel.family avatar

@ct_bergstrom Your first reference to "right" above should be "left".

ct_bergstrom,

@marcel I've been making this mistake since I was three.

Thank you! Fixed.

marcel,
@marcel@waldvogel.family avatar

@ct_bergstrom I think I can feel with you. Only at age 12 I learned a (horribly complicated) trick to reliably distinguish left from right. Required half a second of focusing.

It's much better now, but I still wouldn't mind replacing left/right with a more "natural" concept…

ct_bergstrom,

@marcel You will be unsurprised to hear that I nearly failed organic chemistry.

ct_bergstrom,
  1. In a system such as this, one can work out the mathematics of how the universe of possible objects increases with increasing assembly index. In general, it blows up super-exponentially. The Nature paper does this, though most of the details are hidden in the supplementary material.
Dianora,
@Dianora@ottawa.place avatar

@ct_bergstrom Kolmogorov complexity.

ct_bergstrom,
  1. But what happens if not all assembly rules are equally like to be applied, not all objects are equally likely to be incorporated into downstream objects, or not all objects are equally likely to survive?

One can treat that mathematically as well, and the space of observed objects can collapse.

tomtrottel,
@tomtrottel@mastodontech.de avatar

@ct_bergstrom ( "the space of observed objects can collapse." would made a nice warning sign for an abstract area of danger. )

wertercatt,

@tomtrottel @ct_bergstrom Hazel: I feel like you could build a whole SCP around that sentence alone

ct_bergstrom,

@wertercatt @tomtrottel Wait until you read book 3 of the Three Body Problem triology.

tomtrottel,
@tomtrottel@mastodontech.de avatar

@ct_bergstrom ( easy, just be the center :-) ) ( never read the science fiction novels, worth ? )

ct_bergstrom,

@tomtrottel I loved them and I read only a small amount of science fiction these days. Definitely male-coded hard scifi.

bjorn_hogberg,

@ct_bergstrom @wertercatt @tomtrottel Thanks for the review. I have always found it hard to see the main difference between assembly theory and algorithmic complexity (like Kolmogorov complexity), what is the main difference? Is it maybe the concept of the “copy number”?

ct_bergstrom,

@bjorn_hogberg @wertercatt @tomtrottel I don't fully understand this myself. My first thought was also that this was a reformulation of algorithmic complexity. Copy number is an important addition for sure. I look forward to a discussion emerging around this, which of course was my main motivation for writing the thread.

ct_bergstrom, (edited )

@bjorn_hogberg @wertercatt @tomtrottel

The authors have a short, dryly witty paragraph on this that I suspect will be lost on 99.99% of their audience; it was lost on me.

After further consideration, my interpretation of what they are saying is that until we get way down the evolutionary pathway toward complex life, what a universal Turing machine can do (KL complexity) is irrelevant because there are no universal Turing machines until very late in the process.

tomtrottel,
@tomtrottel@mastodontech.de avatar

@ct_bergstrom ( forgive my unqualified comment, but that sounds like somekind of a chaos infused fuzzy compiler is needed , recompiling part of itself at runtime to compile new parts :-) )

bjorn_hogberg,

@ct_bergstrom @wertercatt @tomtrottel I didn’t understand that. From that paragraph it sounds like AT is not to be used for actual biology, but rather for its “progenitor molecules”, i.e. stuff that would not require assemblers/constructors, like ribosomes and polymerases (Turing machine-like things)?

ct_bergstrom, (edited )

@bjorn_hogberg @wertercatt @tomtrottel

At the level of molecules, that's probably right?

Maybe there are applications of AT at higher level of structure e.g. assemblages of proteins? I'm not sure. I had never heard the term until Wedneday.

minimaliste13,

@ct_bergstrom @bjorn_hogberg @wertercatt @tomtrottel My understanding is the same as yours. Kolmogorov complexity assumes strong abstract computational powers (loops!), far beyond what we would expect from any real-world compositional mechanism. For instance, the K complexity of the sequences of natural numbers or of the cubes (say) is very small but we would be very surprised to see anything like this arising organically (either in the narrow sense of biology or the broader sense of chemistry).

livcomp,
@livcomp@hachyderm.io avatar

@ct_bergstrom I think here Kolmogorov is just playing the customary complexity straw man, as if there's no third choice. Unfortunately, their attack that it "reflects nothing of the underlying process" largely applies to AT as well.

Their "conservative" assumption, taken seriously, requires an "underlying process" capable of performing constant effort searches of a hyperexponential space.

Rather than a third choice like, you know, looking at what reactions are actually happening in the 'goo'.

ct_bergstrom,
  1. Moreover, with strong enough biases in how assembly proceeds, the objects that are produced in high multiplicity of “copy number”. This can occur even for objects that have high assembly index.

Notice that thus far we are still talking about a simple model in discrete mathematics.

ct_bergstrom,
  1. If we see a world with a high diversity of objects with low assembly index, it suggests that objects are merely randomly assembling and/or disassembling with no particular preference among assembly rules nor much propensity for some forms to survive better than others.
ct_bergstrom,
  1. If instead we see a world with a low diversity of objects with high assembly index, we then need some explanation for why we these objects instead of the many others that could exist. This explanation might involve biases in assembly — think catalysis — or in survival — think selection.
ct_bergstrom,
  1. Here’s an example. Suppose we observe world 1 at left. The objects are low assembly index, low copy number. Much of the possibility space at observed assembly indices is filled out.
ct_bergstrom,
  1. Suppose instead we observe world 2 at right. The objects are high assembly index, high copy number. There’s clearly something special about that AA-B-CC-DD structure; it’s either really easy to form, or really stable once formed, or both.
ct_bergstrom,
  1. Moreover these mechanisms creating preferences for some objects over others are making it possible to create and explore more of the object space for high assembly index objects, instead of getting bogged down in the already massive space of low assembly index possibilities.
ct_bergstrom,
  1. And this brings us to the money figure from the Nature paper, reproduced below. At the left of the figure we see a world like world 1 above. At right, a world like world 2.
ct_bergstrom,
  1. At least at the metaphorical level, life on earth, of course, is like the world at right. Highly complex molecules, organisms, etc., at high assembly numbers, tightly clustered in possibility space. This paper helps us solidify what is special about the biological complexity we observe here.
ct_bergstrom,
  1. Returning at long last to the question at the start of the thread, how do we know if our organic soup from a Jovian moon is the product of some evolutionary process:

If the discrete math model from the paper’s supplementary material can be ported to real-world chemical environments using e.g. mass spectroscopy, we basically know how to build an evolution-detector that we could put on a space probe.

ct_bergstrom,
  1. But what I find even cooler is that this paper gives me a new way to think about how the complexity and compositionality of structures in the universe relates to the processes that led them to come into existence and persist long enough to be observed. At it’s core, that is assembly theory.
bjeelka,

@ct_bergstrom Long story short:

If you have many complex molecules that are all the same - that's probably life.

Still really interesting :)

ct_bergstrom,

@bjeelka I'd say "the product of an evolutionary process" rather than "life", and defining "complex" is a bitch, but yeah, that's a pretty super tl;dr summary.

mona,

@ct_bergstrom complete noob here. i appreciate the effort, it’s lots to think about.

bifouba,

@ct_bergstrom Fantastic, thanks for the summary. Any thoughts on how that relates to something like Kolmogorov complexity?

ct_bergstrom,

@bifouba Not well-enough formed ones yet. See this discussion: https://fediscience.org/

bifouba,

@ct_bergstrom Thanks!

Dianora,
@Dianora@ottawa.place avatar

@ct_bergstrom Excellent description. Agreed the writing was awful and the association fallacy. There is a kernel of a good idea there.

kevinwinker,

@ct_bergstrom Thanks for the careful review, Carl. I dreaded having to try to pierce the offputting writing and the negative reviews of this to understand its core value.

tmr232,

@ct_bergstrom thanks for the thread!

coprolite9000,
@coprolite9000@mastodon.me.uk avatar

@ct_bergstrom
Reminds me a little of using Zipf's Law as a rough statistical test for language - for instance, in the case of the endlessly discussed Voynich manuscript.

Definitely interesting stuff!

ct_bergstrom,

@coprolite9000 Yeah, there are definitely connections in the use of scaling laws.

Divorytaur,
@Divorytaur@mastodon.social avatar

@ct_bergstrom Nice thread, thnx.

katchwreck,
@katchwreck@mastodon.social avatar

@ct_bergstrom one problem with this is that it treats molecules as classical objects, i.e. based on independent point masses, which violates Heisenberg's assumption that the true system state is a higher-dimensional function dependent on all of the variables coupled together, simultaneously, and which is in principle unobservable. even the concept of a "particle" is just an approximation of this high dimensional function in the form of a factorization. it's unlikely that biology is so simple

ct_bergstrom,

@katchwreck Remember, this is a model in discrete mathematics, not a model of physics.

katchwreck,
@katchwreck@mastodon.social avatar

@ct_bergstrom right, but they are chemists claiming that it explains evolution

vanderZwan,

@ct_bergstrom I feel like this is related to the Boltzmann brain thought experiment somehow, but I can't quite put my finger on how to connect them properly

https://en.wikipedia.org/wiki/Boltzmann_brain

(maybe this came up in the early feedback/critique, so apologies if this has already been discussed to (heat) death; I just learned of this paper through your thread)

ct_bergstrom,

@vanderZwan I had never heard of this. Eager to read more.

vanderZwan,

@ct_bergstrom IIRC the consensus among cosmologists is more or less "current cosmology theories seem to suggest that we are statistically more likely to be Boltzmann brains than "normal" observers. We are assuming that that means there is an error in our theories yet to be discovered that explains this"

Who knows, maybe the maths in this paper is relevant to that?

albertcardona,
@albertcardona@mathstodon.xyz avatar

@ct_bergstrom

On this regard – the processes that let complex structures come to be – I am reminded here of:

"On the statistical mechanics of life: Schrödinger revisited" by Jeffery, Pollack and Rovelli 2019 https://arxiv.org/abs/1908.08374

Where it says:

"We question some common assumptions about the thermodynamics of life and illustrate how, contrary to widespread belief, even in a closed system entropy growth can accompany an increase in macroscopic order."

dkloke,
@dkloke@beige.party avatar

@ct_bergstrom
Thank you for this writeup! I guess I'm ready to brave the paper now so armed with insights to look out for.

I've been thinking about these characteristics as probabilities of occurrence of assembly events and their local diversity. I think locality is the misunderstood missing piece for physics. Local system effects arise in nonreciprocal systems:
https://www.quantamagazine.org/a-new-theory-for-systems-that-defy-newtons-third-law-20211111/

These arise in several different scenarios, like condensation of solar systems. Solar systems become very stable within their dynamic activity when they "survive" whatever catastrophic (planetary crashing) was inherent in their formation, very difficult to predict.

So we can note that we ourselves, phenotypes of R/DNA genotypes, are very unlikely in general, but less unlikely under conditions at this location. There are several layers of assembly processes involved.

inthehands,
@inthehands@hachyderm.io avatar

@ct_bergstrom
Highly reminiscent of the theory of Big Bang and supernova nucleosynthesis! Makes sense as an analytical approach.

tjradcliffe,

@ct_bergstrom This is a wonderful explanation. I saw the paper go by but ignored it.

Tom's Law of the Internet: "Eventually everything will get a simple explanation from an expert, you just have to find it in the noise."

tanepiper,
@tanepiper@tane.codes avatar

@ct_bergstrom This seems to assume two things - that life takes on the same form as life on earth, and that humans know what they are looking for.

I'm both cases, with infinite probability - what if we have "life" all wrong - we assume sentience in these cases? But what about basic conciseness + life, how could we spot something the universe has decided to try differently?

We so far have only one lab, and even then we're not entirely sure how it works.

ct_bergstrom,

@tanepiper If you look at the discrete math model, I think it does exactly the opposite. It doesn't make any effort to distinguish life and non-life, and certainly doesn't say anything about sentience. What it does do it tell us how we could spot assemblages that have arise through some sort of evolutionary process.

tanepiper,
@tanepiper@tane.codes avatar

@ct_bergstrom Got it. It's a bit of a heavy read on holiday and I couldn't quite grok it, but from your description you make some clarity - life assembly doesn't require a specific set of preconditions other than a certain amount of repetition - where you see that, then it suggests that the further conditions for life are possible (hence why humans are humans, dogs are dogs, insects are insects, etc)

ct_bergstrom,

@tanepiper Oh the paper itself hides this message expertly. I wouldn't expect anyone to see it. Hence the time spent on the thread.

ShorephaLi,

@ct_bergstrom
Hi Prof. Bergstrom
You might also find this work interesting (https://www.researchsquare.com/article/rs-3440555/v2), which is motivated by Francois Jacob's concept of tinkering and similar ideas, and falls within the broader category of Algorithmic Information Theory.
More importantly, it can characterize the hierarchical and nested relationships among repetitive substructures.

ct_bergstrom,

@ShorephaLi Thank you. This paper looks extremely interesting!

Dianora,
@Dianora@ottawa.place avatar

@ct_bergstrom
Throwing out the science because of the association informal fallacy is also a fallacy IMO. Again, furiously agreed.

meercat0,
@meercat0@mastodon.social avatar

@ct_bergstrom COI=Conflict of interest, for those who aren’t familiar

Walrus,
@Walrus@toot.wales avatar

@ct_bergstrom

I have read it now, and know enough maths to see what it's saying.

Conjecture: there might be subjects about which good writing is difficult...

Dianora,
@Dianora@ottawa.place avatar

@ct_bergstrom Furiously agreed. Level of complexity is a great metric I am just not sure he chose the right one.

teixi,
@teixi@mastodon.social avatar

@ct_bergstrom

HT for your paper digest/explain/critique !

Just 2 Q:

  1. ontogenesis, morphogenesis, heterochrony, etc. no cool anymore?

  2. by change, random, etc. today read this: https://doi.org/10.1093/icb/20.4.653
    Fig 9 smells like AT precursor or else?

60sRefugee,
@60sRefugee@spacey.space avatar

@ct_bergstrom Even if there is no cellular life in any of the outer system moons, there may be organic molecular structures that give us clues to how abiogenesis might have taken place.

texttheater,
@texttheater@mastodon.social avatar
prachisrivas, (edited )
@prachisrivas@masto.ai avatar

@ct_bergstrom

Really great explanation. Thanks.

michaelaye,
@michaelaye@mastodon.online avatar

@ct_bergstrom that’s funny. I saw your bio and thought, isn’t that YOUR job to tell us? And then you did. ;)

santoperdido,

@ct_bergstrom At some point in the chain, all organic matter has been randomly assembled goo.

meercat0,
@meercat0@mastodon.social avatar

@ct_bergstrom Thank you for the time you took to explain to us laymen👍

Walrus,
@Walrus@toot.wales avatar

@ct_bergstrom

But that's exactly how I always assumed evolution works... 😎

ct_bergstrom,

@Walrus quite a profound comment as it turns out. The paper forced me to do a lot of rethinking of the difference between random goo and output of evolutionary processes.

It’s not a dichotomy but rather a matter of degree, and I never understood that before.

simon_lucy,
@simon_lucy@mastodon.social avatar

@ct_bergstrom @Walrus

The opportunity for Life is random but there are infinite goes.

Kaaswe,

@ct_bergstrom
Amazing work and very well described theory where so many dimensions have been used to limit and or qualify the outcome to make it possible to calculate. For me as a simple beginner, this is great reading and I’m curious if this theory yet has been used on any exomaterial?

ct_bergstrom,

@Kaaswe not to the best of my knowledge, but my understanding is that the authors, or at least some of them, think that this would be almost immediately possible, using current mass spec technology.

jwcph,
@jwcph@norrebro.space avatar

@ct_bergstrom Thinking about that you might enjoy this: https://youtu.be/JOiGEI9pQBs 😊

ct_bergstrom,

@jwcph "It's a chicken and egg paradox with several chickens and eggs."😂

  • All
  • Subscribed
  • Moderated
  • Favorites
  • science
  • khanakhh
  • magazineikmin
  • mdbf
  • GTA5RPClips
  • everett
  • rosin
  • Youngstown
  • tacticalgear
  • slotface
  • ngwrru68w68
  • kavyap
  • DreamBathrooms
  • thenastyranch
  • tester
  • JUstTest
  • ethstaker
  • cubers
  • osvaldo12
  • cisconetworking
  • Durango
  • InstantRegret
  • normalnudes
  • Leos
  • modclub
  • anitta
  • provamag3
  • megavids
  • lostlight
  • All magazines