Tar_alcaran,

The statistic you’re looking for is energy density. It’s usually expressed as Watthour per kilo(Wh/kg). Li-ion batteries are somewhere around 300Wh/kg, or about 1 megajoule though less if you’re making it into a building.

Lifting a big weight provides you with Mass x 9.81 x Height amount of joules. So lifting 1 kg for 100m gives you 1x10x100~ 1 kilojoule.

So, to charge my 300kg, 32.000 Wh Nissan leaf battery (130Wh/kg, what you get when you actually build batteries in the real world), you would need to lift a mass of 115tons to 100 meters. So to charge a single car, at 100% efficiency, you need to lift 72 entire cars. Just so I can drive to work and back. And real-world efficiency is far below 100%, just think of the friction.

I think you’ve spotted the reason why we don’t actually build gravity batteries. Imagine lifting 115 tons to 100m, that requires a massive crane, itself weighting nearly half that. That’s why all gravity storage in existence basically consists of pumping water uphill, onto pre-existing mountains and lakes that nobody had to fabricate out of concrete and steel.

  • All
  • Subscribed
  • Moderated
  • Favorites
  • asklemmy@lemmy.world
  • DreamBathrooms
  • mdbf
  • ngwrru68w68
  • magazineikmin
  • thenastyranch
  • rosin
  • khanakhh
  • osvaldo12
  • Youngstown
  • slotface
  • Durango
  • kavyap
  • InstantRegret
  • tacticalgear
  • anitta
  • ethstaker
  • provamag3
  • cisconetworking
  • tester
  • GTA5RPClips
  • cubers
  • everett
  • modclub
  • megavids
  • normalnudes
  • Leos
  • JUstTest
  • lostlight
  • All magazines